Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Cell Rep Phys Sci ; 5(3)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38605913

RESUMO

Hypervirulent Klebsiella pneumoniae is known for its increased extracellular polysaccharide production. Biofilm matrices of hypervirulent K. pneumoniae have increased polysaccharide abundance and are uniquely susceptible to disruption by peptide bactenecin 7 (bac7 (1-35)). Here, using confocal microscopy, we show that polysaccharides within the biofilm matrix collapse following bac7 (1-35) treatment. This collapse led to the release of cells from the biofilm, which were then killed by the peptide. Characterization of truncated peptide analogs revealed that their interactions with polysaccharide were responsible for the biofilm matrix changes that accompany bac7 (1-35) treatment. Ultraviolet photodissociation mass spectrometry with the parental peptide or a truncated analog bac7 (10-35) reveal the important regions for bac7 (1-35) complexing with polysaccharides. Finally, we tested bac7 (1-35) using a murine skin abscess model and observed a significant decrease in the bacterial burden. These findings unveil the potential of bac7 (1-35) polysaccharide interactions to collapse K. pneumoniae biofilms.

2.
bioRxiv ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38585860

RESUMO

Encrypted peptides have been recently described as a new class of antimicrobial molecules. They have been proposed to play a role in host immunity and as alternatives to conventional antibiotics. Intriguingly, many of these peptides are found embedded in proteins unrelated to the immune system, suggesting that immunological responses may extend beyond traditional host immunity proteins. To test this idea, here we synthesized and tested representative peptides derived from non-immune proteins for their ability to exert antimicrobial and immunomodulatory properties. Our experiments revealed that most of the tested peptides from non-immune proteins, derived from structural proteins as well as proteins from the nervous and visual systems, displayed potent in vitro antimicrobial activity. These molecules killed bacterial pathogens by targeting their membrane, and those originating from the same region of the body exhibited synergistic effects when combined. Beyond their antimicrobial properties, nearly 90% of the peptides tested exhibited immunomodulatory effects, modulating inflammatory mediators such as IL-6, TNF-α, and MCP-1. Moreover, eight of the peptides identified, collagenin 3 and 4, zipperin-1 and 2, and immunosin-2, 3, 12, and 13, displayed anti-infective efficacy in two different preclinical mouse models, reducing bacterial infections by up to four orders of magnitude. Altogether, our results support the hypothesis that peptides from non-immune proteins may play a role in host immunity. These results potentially expand our notion of the immune system to include previously unrecognized proteins and peptides that may be activated upon infection to confer protection to the host.

3.
Proteomics ; : e2300105, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38458994

RESUMO

Peptides have a plethora of activities in biological systems that can potentially be exploited biotechnologically. Several peptides are used clinically, as well as in industry and agriculture. The increase in available 'omics data has recently provided a large opportunity for mining novel enzymes, biosynthetic gene clusters, and molecules. While these data primarily consist of DNA sequences, other types of data provide important complementary information. Due to their size, the approaches proven successful at discovering novel proteins of canonical size cannot be naïvely applied to the discovery of peptides. Peptides can be encoded directly in the genome as short open reading frames (smORFs), or they can be derived from larger proteins by proteolysis. Both of these peptide classes pose challenges as simple methods for their prediction result in large numbers of false positives. Similarly, functional annotation of larger proteins, traditionally based on sequence similarity to infer orthology and then transferring functions between characterized proteins and uncharacterized ones, cannot be applied for short sequences. The use of these techniques is much more limited and alternative approaches based on machine learning are used instead. Here, we review the limitations of traditional methods as well as the alternative methods that have recently been developed for discovering novel bioactive peptides with a focus on prokaryotic genomes and metagenomes.

4.
Drug Resist Updat ; 73: 101067, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38387282
5.
Sci Rep ; 14(1): 4682, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409185

RESUMO

Malaria can have severe long-term effects. Even after treatment with antimalarial drugs eliminates the parasite, survivors of cerebral malaria may suffer from irreversible brain damage, leading to cognitive deficits. Angiotensin II, a natural human peptide hormone that regulates blood pressure, has been shown to be active against Plasmodium spp., the etiologic agent of malaria. Here, we tested two Ang II derivatives that do not elicit vasoconstriction in mice: VIPF, a linear tetrapeptide, which constitutes part of the hydrophobic portion of Ang II; and Ang II-SS, a disulfide-bridged derivative. The antiplasmodial potential of both peptides was evaluated with two mouse models: an experimental cerebral malaria model and a mouse model of non-cerebral malaria. The latter consisted of BALB/c mice infected with Plasmodium berghei ANKA. The peptides had no effect on mean blood pressure and significantly reduced parasitemia in both mouse models. Both peptides reduced the SHIRPA score, an assay used to assess murine health and behavior. However, only the constrained derivative (Ang II-SS), which was also resistant to proteolytic degradation, significantly increased mouse survival. Here, we show that synthetic peptides derived from Ang II are capable of conferring protection against severe manifestations of malaria in mouse models while overcoming the vasoconstrictive side effects of the parent peptide.


Assuntos
Antimaláricos , Malária Cerebral , Animais , Camundongos , Humanos , Malária Cerebral/tratamento farmacológico , Malária Cerebral/prevenção & controle , Malária Cerebral/parasitologia , Angiotensina II/farmacologia , Angiotensina II/uso terapêutico , Modelos Animais de Doenças , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Plasmodium berghei/fisiologia , Camundongos Endogâmicos C57BL
6.
ACS Nano ; 18(3): 1757-1777, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38189684

RESUMO

Many systems have been designed for the detection of SARS-CoV-2, which is the virus that causes COVID-19. SARS-CoV-2 is readily transmitted, resulting in the rapid spread of disease in human populations. Frequent testing at the point of care (POC) is a key aspect for controlling outbreaks caused by SARS-CoV-2 and other emerging pathogens, as the early identification of infected individuals can then be followed by appropriate measures of isolation or treatment, maximizing the chances of recovery and preventing infectious spread. Diagnostic tools used for high-frequency testing should be inexpensive, provide a rapid diagnostic response without sophisticated equipment, and be amenable to manufacturing on a large scale. The application of these devices should enable large-scale data collection, help control viral transmission, and prevent disease propagation. Here we review functional nanomaterial-based optical and electrochemical biosensors for accessible POC testing for COVID-19. These biosensors incorporate nanomaterials coupled with paper-based analytical devices and other inexpensive substrates, traditional lateral flow technology (antigen and antibody immunoassays), and innovative biosensing methods. We critically discuss the advantages and disadvantages of nanobiosensor-based approaches compared to widely used technologies such as PCR, ELISA, and LAMP. Moreover, we delineate the main technological, (bio)chemical, translational, and regulatory challenges associated with developing functional and reliable biosensors, which have prevented their translation into the clinic. Finally, we highlight how nanobiosensors, given their unique advantages over existing diagnostic tests, may help in future pandemics.


Assuntos
Técnicas Biossensoriais , COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Teste para COVID-19 , Pandemias , Técnicas Biossensoriais/métodos , Tecnologia
7.
Biotechnol Adv ; 71: 108296, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38042311

RESUMO

Classical plant breeding methods are limited in their ability to confer disease resistance on plants. However, in recent years, advancements in molecular breeding and biotechnological have provided new approaches to overcome these limitations and protect plants from disease. Antimicrobial peptides (AMPs) constitute promising agents that may be able to protect against infectious agents. Recently, peptides have been recombinantly produced in plants at scale and low cost. Because AMPs are less likely than conventional antimicrobials to elicit resistance of pathogenic bacteria, they open up exciting new avenues for agricultural applications. Here, we review recent advances in the design and production of bioactive recombinant AMPs that can effectively protect crop plants from diseases.


Assuntos
Anti-Infecciosos , Peptídeos Catiônicos Antimicrobianos , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Antimicrobianos , Plantas/genética , Anti-Infecciosos/química , Biotecnologia
8.
ACS Appl Bio Mater ; 7(2): 617-625, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36971822

RESUMO

Computer-aided molecular design and protein engineering emerge as promising and active subjects in bioengineering and biotechnological applications. On one hand, due to the advancing computing power in the past decade, modeling toolkits and force fields have been put to use for accurate multiscale modeling of biomolecules including lipid, protein, carbohydrate, and nucleic acids. On the other hand, machine learning emerges as a revolutionary data analysis tool that promises to leverage physicochemical properties and structural information obtained from modeling in order to build quantitative protein structure-function relationships. We review recent computational works that utilize state-of-the-art computational methods to engineer peptides and proteins for various emerging biomedical, antimicrobial, and antifreeze applications. We also discuss challenges and possible future directions toward developing a roadmap for efficient biomolecular design and engineering.


Assuntos
Materiais Biocompatíveis , Peptídeos , Humanos , Materiais Biocompatíveis/uso terapêutico , Peptídeos/química , Proteínas/química , Biotecnologia , Engenharia de Proteínas
9.
Drug Resist Updat ; 71: 101012, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37924726

RESUMO

Despite significant progress in antibiotic discovery, millions of lives are lost annually to infections. Surprisingly, the failure of antimicrobial treatments to effectively eliminate pathogens frequently cannot be attributed to genetically-encoded antibiotic resistance. This review aims to shed light on the fundamental mechanisms contributing to clinical scenarios where antimicrobial therapies are ineffective (i.e., antibiotic failure), emphasizing critical factors impacting this under-recognized issue. Explored aspects include biofilm formation and sepsis, as well as the underlying microbiome. Therapeutic strategies beyond antibiotics, are examined to address the dimensions and resolution of antibiotic failure, actively contributing to this persistent but escalating crisis. We discuss the clinical relevance of antibiotic failure beyond resistance, limited availability of therapies, potential of new antibiotics to be ineffective, and the urgent need for novel anti-infectives or host-directed therapies directly addressing antibiotic failure. Particularly noteworthy is multidrug adaptive resistance in biofilms that represent 65 % of infections, due to the lack of approved therapies. Sepsis, responsible for 19.7 % of all deaths (as well as severe COVID-19 deaths), is a further manifestation of this issue, since antibiotics are the primary frontline therapy, and yet 23 % of patients succumb to this condition.


Assuntos
Antibacterianos , Sepse , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana , Biofilmes , Sepse/tratamento farmacológico
10.
Expert Opin Drug Discov ; 18(11): 1245-1257, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37794737

RESUMO

INTRODUCTION: As machine learning (ML) and artificial intelligence (AI) expand to many segments of our society, they are increasingly being used for drug discovery. Recent deep learning models offer an efficient way to explore high-dimensional data and design compounds with desired properties, including those with antibacterial activity. AREAS COVERED: This review covers key frameworks in antibiotic discovery, highlighting physicochemical features and addressing dataset limitations. The deep learning approaches here described include discriminative models such as convolutional neural networks, recurrent neural networks, graph neural networks, and generative models like neural language models, variational autoencoders, generative adversarial networks, normalizing flow, and diffusion models. As the integration of these approaches in drug discovery continues to evolve, this review aims to provide insights into promising prospects and challenges that lie ahead in harnessing such technologies for the development of antibiotics. EXPERT OPINION: Accurate antimicrobial prediction using deep learning faces challenges such as imbalanced data, limited datasets, experimental validation, target strains, and structure. The integration of deep generative models with bioinformatics, molecular dynamics, and data augmentation holds the potential to overcome these challenges, enhance model performance, and utlimately accelerate antimicrobial discovery.


Assuntos
Inteligência Artificial , Aprendizado Profundo , Humanos , Antibacterianos/farmacologia , Redes Neurais de Computação , Aprendizado de Máquina
11.
Commun Biol ; 6(1): 1067, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857855

RESUMO

The physicochemical and structural properties of antimicrobial peptides (AMPs) determine their mechanism of action and biological function. However, the development of AMPs as therapeutic drugs has been traditionally limited by their toxicity for human cells. Tuning the physicochemical properties of such molecules may abolish toxicity and yield synthetic molecules displaying optimal safety profiles and enhanced antimicrobial activity. Here, natural peptides were modified to improve their activity by the hybridization of sequences from two different active peptide sequences. Hybrid AMPs (hAMPs) were generated by combining the amphipathic faces of the highly toxic peptide VmCT1, derived from scorpion venom, with parts of four other naturally occurring peptides having high antimicrobial activity and low toxicity against human cells. This strategy led to the design of seven synthetic bioactive variants, all of which preserved their structure and presented increased antimicrobial activity (3.1-128 µmol L-1). Five of the peptides (three being hAMPs) presented high antiplasmodial at 0.8 µmol L-1, and virtually no undesired toxic effects against red blood cells. In sum, we demonstrate that peptide hybridization is an effective strategy for redirecting biological activity to generate novel bioactive molecules with desired properties.


Assuntos
Anti-Infecciosos , Peptídeos Catiônicos Antimicrobianos , Humanos , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Anti-Infecciosos/farmacologia , Sequência de Aminoácidos
12.
ACS Appl Bio Mater ; 6(11): 4805-4813, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37862451

RESUMO

Combining different antimicrobial agents has emerged as a promising strategy to enhance efficacy and address resistance evolution. In this study, we investigated the synergistic antimicrobial effect of a cationic biobased polymer and the antimicrobial peptide (AMP) temporin L, with the goal of developing multifunctional electrospun fibers for potential biomedical applications, particularly in wound dressing. A clickable polymer with pendent alkyne groups was synthesized by using a biobased itaconic acid building block. Subsequently, the polymer was functionalized through click chemistry with thiazolium groups derived from vitamin B1 (PTTIQ), as well as a combination of thiazolium and AMP temporin L, resulting in a conjugate polymer-peptide (PTTIQ-AMP). The individual and combined effects of the cationic PTTIQ, Temporin L, and PTTIQ-AMP were evaluated against Gram-positive and Gram-negative bacteria as well as Candida species. The results demonstrated that most combinations exhibited an indifferent effect, whereas the covalently conjugated PTTIQ-AMP displayed an antagonistic effect, potentially attributed to the aggregation process. Both antimicrobial compounds, PTTIQ and temporin L, were incorporated into poly(lactic acid) electrospun fibers using the supercritical solvent impregnation method. This approach yielded fibers with improved antibacterial performance, as a result of the potent activity exerted by the AMP and the nonleaching nature of the cationic polymer, thereby enhancing long-term effectiveness.


Assuntos
Antibacterianos , Bactérias Gram-Negativas , Antibacterianos/farmacologia , Bactérias Gram-Positivas , Alcinos , Cátions , Polímeros/farmacologia
13.
14.
bioRxiv ; 2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37693399

RESUMO

Drug-resistant bacteria are outpacing traditional antibiotic discovery efforts. Here, we computationally mined 444,054 families of putative small proteins from 1,773 human gut metagenomes, identifying 323 peptide antibiotics encoded in small open reading frames (smORFs). To test our computational predictions, 78 peptides were synthesized and screened for antimicrobial activity in vitro, with 59% displaying activity against either pathogens or commensals. Since these peptides were unique compared to previously reported antimicrobial peptides, we termed them smORF-encoded peptides (SEPs). SEPs killed bacteria by targeting their membrane, synergized with each other, and modulated gut commensals, indicating that they may play a role in reconfiguring microbiome communities in addition to counteracting pathogens. The lead candidates were anti-infective in both murine skin abscess and deep thigh infection models. Notably, prevotellin-2 from Prevotella copri presented activity comparable to the commonly used antibiotic polymyxin B. We report the discovery of hundreds of peptide sequences in the human gut.

15.
bioRxiv ; 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37693522

RESUMO

Novel antibiotics are urgently needed to combat the antibiotic-resistance crisis. We present a machine learning-based approach to predict prokaryotic antimicrobial peptides (AMPs) by leveraging a vast dataset of 63,410 metagenomes and 87,920 microbial genomes. This led to the creation of AMPSphere, a comprehensive catalog comprising 863,498 non-redundant peptides, the majority of which were previously unknown. We observed that AMP production varies by habitat, with animal-associated samples displaying the highest proportion of AMPs compared to other habitats. Furthermore, within different human-associated microbiota, strain-level differences were evident. To validate our predictions, we synthesized and experimentally tested 50 AMPs, demonstrating their efficacy against clinically relevant drug-resistant pathogens both in vitro and in vivo. These AMPs exhibited antibacterial activity by targeting the bacterial membrane. Additionally, AMPSphere provides valuable insights into the evolutionary origins of peptides. In conclusion, our approach identified AMP sequences within prokaryotic microbiomes, opening up new avenues for the discovery of antibiotics.

16.
Cell Host Microbe ; 31(8): 1260-1274.e6, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37516110

RESUMO

Molecular de-extinction could offer avenues for drug discovery by reintroducing bioactive molecules that are no longer encoded by extant organisms. To prospect for antimicrobial peptides encrypted within extinct and extant human proteins, we introduce the panCleave random forest model for proteome-wide cleavage site prediction. Our model outperformed multiple protease-specific cleavage site classifiers for three modern human caspases, despite its pan-protease design. Antimicrobial activity was observed in vitro for modern and archaic protein fragments identified with panCleave. Lead peptides showed resistance to proteolysis and exhibited variable membrane permeabilization. Additionally, representative modern and archaic protein fragments showed anti-infective efficacy against A. baumannii in both a skin abscess infection model and a preclinical murine thigh infection model. These results suggest that machine-learning-based encrypted peptide prospection can identify stable, nontoxic peptide antibiotics. Moreover, we establish molecular de-extinction through paleoproteome mining as a framework for antibacterial drug discovery.


Assuntos
Anti-Infecciosos , Peptídeos Antimicrobianos , Animais , Humanos , Camundongos , Peptídeos/farmacologia , Antibacterianos/farmacologia , Aprendizado de Máquina , Peptídeo Hidrolases , Testes de Sensibilidade Microbiana
17.
Science ; 381(6654): 164-170, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37440620

RESUMO

Despite advances in molecular biology, genetics, computation, and medicinal chemistry, infectious disease remains an ominous threat to public health. Addressing the challenges posed by pathogen outbreaks, pandemics, and antimicrobial resistance will require concerted interdisciplinary efforts. In conjunction with systems and synthetic biology, artificial intelligence (AI) is now leading to rapid progress, expanding anti-infective drug discovery, enhancing our understanding of infection biology, and accelerating the development of diagnostics. In this Review, we discuss approaches for detecting, treating, and understanding infectious diseases, underscoring the progress supported by AI in each case. We suggest future applications of AI and how it might be harnessed to help control infectious disease outbreaks and pandemics.


Assuntos
Anti-Infecciosos , Inteligência Artificial , Controle de Doenças Transmissíveis , Doenças Transmissíveis , Descoberta de Drogas , Humanos , Doenças Transmissíveis/tratamento farmacológico , Descoberta de Drogas/métodos , Pandemias/prevenção & controle , Saúde Pública , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia
18.
Front Bioinform ; 3: 1216362, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37521317

RESUMO

Antimicrobial peptides (AMPs) are components of natural immunity against invading pathogens. They are polymers that fold into a variety of three-dimensional structures, enabling their function, with an underlying sequence that is best represented in a non-flat space. The structural data of AMPs exhibits non-Euclidean characteristics, which means that certain properties, e.g., differential manifolds, common system of coordinates, vector space structure, or translation-equivariance, along with basic operations like convolution, in non-Euclidean space are not distinctly established. Geometric deep learning (GDL) refers to a category of machine learning methods that utilize deep neural models to process and analyze data in non-Euclidean settings, such as graphs and manifolds. This emerging field seeks to expand the use of structured models to these domains. This review provides a detailed summary of the latest developments in designing and predicting AMPs utilizing GDL techniques and also discusses both current research gaps and future directions in the field.

19.
ACS Nano ; 17(10): 9442-9454, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37171407

RESUMO

MXenes are being heavily investigated in biomedical research, with applications ranging from regenerative medicine to bioelectronics. To enable the adoption and integration of MXenes into therapeutic platforms and devices, however, their stability under standard sterilization procedures must be established. Here, we present a comprehensive investigation of the electrical, chemical, structural, and mechanical effects of common thermal (autoclave) and chemical (ethylene oxide (EtO) and H2O2 gas plasma) sterilization protocols on both thin-film Ti3C2Tx MXene microelectrodes and mesoscale arrays made from Ti3C2Tx-infused cellulose-elastomer composites. We also evaluate the effectiveness of the sterilization processes in eliminating all pathogens from the Ti3C2Tx films and composites. Post-sterilization analysis revealed that autoclave and EtO did not alter the DC conductivity, electrochemical impedance, surface morphology, or crystallographic structure of Ti3C2Tx and were both effective at eliminating E. coli from both types of Ti3C2Tx-based devices. On the other end, exposure to H2O2 gas plasma sterilization for 45 min induced severe degradation of the structure and properties of Ti3C2Tx films and composites. The stability of the Ti3C2Tx after EtO and autoclave sterilization and the complete removal of pathogens establish the viability of both sterilization processes for Ti3C2Tx-based technologies.


Assuntos
Escherichia coli , Peróxido de Hidrogênio , Titânio/farmacologia , Esterilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...